
 

 

 

 

 

CS634 Midterm Project 
Name: Adit Nuwal 

UCID: an238 

Email: an238@njit.edu 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:an238@njit.edu


 

Table of Contents 

1.​Introduction 

2.​Project Description 

3.​Summary 

4.​Source Code 

5.​Dataset Screenshots 

6.​Code Explanation 

7.​Output 

8.​Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 

Association rule mining is a machine learning technique designed to uncover associations 

between categorical variables in data. In this project, we explore two different approaches to 

association rule mining: the Apriori Algorithm and the Brute Force Method. Our goal is to 

identify frequently occurring item combinations and generate meaningful association rules using 

a simulated dataset that mimics real-world retail transactions. 

This project involves: 

●​ Creating multiple transaction datasets using a predefined list of grocery items. 

●​ Implementing both Apriori and Brute Force approaches to extract frequent itemsets and 

generate association rules. 

●​ Comparing the execution times of both methods to evaluate computational efficiency. 

●​ Allowing users to customize minimum support and confidence thresholds to refine the 

output. 

We analyze these techniques to show why Apriori is the preferred choice for handling large-scale 

datasets, making it a crucial tool in data analytics and business intelligence. 

Project Description 

The project has two parts: 

1.​ Transaction Database Creation: 

○​ Generate 30 grocery items commonly seen in supermarkets. 

○​ Create 5 different databases, each containing 20 transactions made with random 

selections from 30 general items. 

2.​ Association Rule Mining: 

○​ Implement the Apriori algorithm to discover frequent itemsets and generate 

association rules. 

○​ Implement the Brute Force method to enumerate all possible itemsets and 

determine frequent itemsets. 



 

○​ Compare the execution times of both methods to demonstrate the efficiency of 

Apriori over the brute force approach. 

Summary 

●​ Users specify minimum support and confidence values. 

●​ Five transaction datasets are generated and stored. 

●​ Both Apriori and Brute Force methods are applied to mine frequent itemsets and generate 

association rules. 

●​ The results include execution times, frequent itemsets, and the strongest association rules. 

Source Code 
import os 

import pandas as pd 

import itertools 

import time 

import random 

from collections import defaultdict 

 

class DataProcessor: 

    def __init__(self, items): 

        self.dataItems = items 

    

    def createDataSets(self, numSets=20): 

        return [random.sample(self.dataItems, random.randint(5, 10)) for _ 

in range(numSets)] 

    

    def storeData(self, fileData, fileName): 

        df = pd.DataFrame({"Elements": [", ".join(entry) for entry in 

fileData]}) 

        df.to_csv(fileName, index=False) 

    

    def retrieveData(self, fileName): 

        df = pd.read_csv(fileName) 



 

        return [set(items.split(", ")) for items in df["Elements"]] 

 

class AssociationRuleMiner: 

    def __init__(self, minSupp, minConf): 

        self.minSupp = minSupp 

        self.minConf = minConf 

    

    def analyzeApriori(self, fileData): 

        maxLength = len(max(fileData, key=len)) 

        freqSets = [] 

        uniqueItems = set().union(*fileData) 

        itemCounts = defaultdict(int) 

        

        for item in uniqueItems: 

            elementSet = frozenset([item]) 

            itemCounts[elementSet] = sum(1 for group in fileData if 

elementSet.issubset(group)) 

        

        activeSets = [elementSet for elementSet, count in 

itemCounts.items() if count/len(fileData) >= self.minSupp] 

        freqSets.extend(activeSets) 

        if not activeSets: 

            return [], [] 

        

        level = 2 

        while level <= maxLength: 

            newCombos = {a.union(b) for i, a in enumerate(activeSets) for 

b in activeSets[i+1:] if tuple(sorted(a))[:-1] == tuple(sorted(b))[:-1] 

and len(a.union(b)) == level} 

            

            entryCounts = defaultdict(int) 

            for combo in newCombos: 

                for group in fileData: 

                    if combo.issubset(group): 

                        entryCounts[combo] += 1 

            



 

            activeSets = [elementSet for elementSet, count in 

entryCounts.items() if count/len(fileData) >= self.minSupp] 

            if not activeSets: 

                break 

            freqSets.extend(activeSets) 

            level += 1 

        

        return freqSets, self._generateRules(fileData, freqSets) 

    

    def analyzeBruteForce(self, fileData): 

        uniqueElements = set().union(*fileData) 

        freqSets = [] 

        

        for size in range(1, min(5, len(uniqueElements)+1)): 

            combinations = itertools.combinations(uniqueElements, size) 

            entryCounts = {frozenset(combo): sum(1 for group in fileData 

if frozenset(combo).issubset(group)) for combo in combinations} 

            activeSets = [elementSet for elementSet, count in 

entryCounts.items() if count/len(fileData) >= self.minSupp] 

            freqSets.extend(activeSets) 

        

        return freqSets, self._generateRules(fileData, freqSets) 

    

    def _generateRules(self, fileData, freqSets): 

        rulesList = [] 

        for itemset in freqSets: 

            if len(itemset) < 2: 

                continue 

            for subset in itertools.combinations(itemset, len(itemset)-1): 

                subset = frozenset(subset) 

                remaining = itemset - subset 

                subsetCount = sum(1 for group in fileData if 

subset.issubset(group)) 

                fullCount = sum(1 for group in fileData if 

itemset.issubset(group)) 

                if subsetCount == 0: 



 

                    continue 

                confValue = fullCount / subsetCount 

                if confValue >= self.minConf: 

                    suppValue = fullCount / len(fileData) 

                    rulesList.append((subset, remaining, suppValue, 

confValue)) 

        return rulesList 

 

def runAnalysis(): 

    print("\nCS634 Midterm Project") 

    print("Name: Adit Nuwal") 

    print("UCID: an238") 

    print("Email: an238@njit.edu\n") 

    

    minSupp = float(input("Enter the minimum support value (between 0 and 

1): ")) 

    minConf = float(input("Enter the minimum confidence value (between 0 

and 1): ")) 

    

    dataItems = ["Milk", "Bread", "Eggs", "Cheese", "Butter", "Yogurt", 

"Chicken", "Beef", "Pork", "Fish", 

                 "Apples", "Bananas", "Grapes", "Oranges", "Tomatoes", 

"Potatoes", "Onions", "Carrots", "Lettuce", "Cucumber", 

                 "Rice", "Pasta", "Flour", "Sugar", "Salt", "Pepper", 

"Olive Oil", "Cereal", "Juice", "Coffee"] 

    

    processor = DataProcessor(dataItems) 

    miner = AssociationRuleMiner(minSupp, minConf) 

    fileList = [] 

    

    for i in range(1, 6): 

        dataset = processor.createDataSets() 

        fileName = f"dataset_{i}.csv" 

        processor.storeData(dataset, fileName) 

        fileList.append(fileName) 

    



 

    for idx, fileName in enumerate(fileList, 1): 

        print(f"\nProcessing dataset {idx}: {fileName}") 

        fileData = processor.retrieveData(fileName) 

        

        startTime = time.perf_counter() 

        aprioriSets, aprioriRules = miner.analyzeApriori(fileData) 

        aprioriExecTime = time.perf_counter() - startTime 

        

        startTime = time.perf_counter() 

        bruteSets, bruteRules = miner.analyzeBruteForce(fileData) 

        bruteExecTime = time.perf_counter() - startTime 

        

        print(f"\nApriori algorithm took {aprioriExecTime:.8f} seconds.") 

        print(f"Brute-force algorithm took {bruteExecTime:.8f} seconds.") 

        print(f"We found {len(aprioriSets)} frequent itemsets.") 

        print(f"Generated {len(aprioriRules)} association rules.") 

        

        if aprioriRules: 

            print("\nHere are the top 5 strongest association rules:") 

            sortedRules = sorted(aprioriRules, key=lambda x: (-x[3], 

-x[2])) 

            for rule in sortedRules[:5]: 

                print(f"{set(rule[0])} => {set(rule[1])} | Confidence: 

{rule[3]:.2f}, Support: {rule[2]:.2f}") 

 

if __name__ == "__main__": 

    runAnalysis() 

 

Dataset Screenshots 



 

 



 



 

 

Code Explanation 

DataProcessor Class: 

This class is responsible for handling the transactional datasets, including their creation, storage, 
and retrieval. 

●​ createDataSets(numSets=20): Generates synthetic transaction datasets. Each dataset 
contains random selections of grocery items. 

●​ storeData(fileData, fileName): Saves the generated transactions into a CSV file for later 
analysis. 

●​ retrieveData(fileName): Reads transaction data from the CSV file and structures it as a 
list of sets. 

AssociationRuleMiner Class: 

This class implements both the Apriori and Brute Force methods for association rule mining. 



 

Apriori Algorithm (analyzeApriori) 

●​ Step 1: Identify frequent 1-itemsets based on the given support threshold. 

●​ Step 2: Generate larger itemsets iteratively, pruning the search space to reduce 

computation. 

●​ Step 3: Extract association rules using confidence threshold and store them. 

●​ Optimization: The Apriori method reduces the number of candidate itemsets significantly 

by leveraging prior knowledge of frequent itemsets. 

Brute Force Method (analyzeBruteForce) 

●​ Step 1: Enumerates all possible 1-itemsets, 2-itemsets, and higher. 

●​ Step 2: Check each combination for frequency based on the support threshold. 

●​ Step 3: Generates association rules in a computationally expensive manner. 

●​ Limitations: The brute force method is inefficient as it does not eliminate unnecessary 

itemsets early in the process. 

Rule Generation (_generateRules) 

●​ Extracts meaningful association rules from frequent itemsets. 

●​ Computes confidence for each rule and retains only those exceeding the minimum 

confidence threshold. 

runAnalysis Function: 

●​ Prompts the user for minimum support and confidence values. 

●​ Generates and stores five different transaction datasets. 

●​ Executes both Apriori and Brute Force methods on each dataset. 

●​ Measures and displays execution time and extracted rules. 

Output 



 

 

 



 

 

 



 

 

Conclusion 

●​ Efficiency of Apriori Algorithm: The results clearly show that the Apriori algorithm 
significantly reduces computational complexity by leveraging the anti-monotonicity 
property, which prunes non-frequent itemsets early in the process. 

●​ Limitations of Brute Force Approach: The brute force method, while functionally correct, 
exhibits an exponential increase in computation time as the number of items and 
transactions grow. This method becomes impractical for large-scale datasets. 



 

●​ Performance Comparison: The execution time analysis validates the superiority of the 
Apriori algorithm, which requires considerably less computation than the brute force 
method. 

●​ Practical Applications: This project simulates real-world retail transaction analysis, 
demonstrating how businesses can extract meaningful insights from customer purchase 
data using association rule mining. 

This project successfully demonstrates how association rule mining can be used to discover 

patterns in transaction data. The Apriori algorithm is computationally efficient compared to the 

Brute Force approach. 

 


	 
	 
	Table of Contents 
	 
	 
	 
	Introduction 
	Association rule mining is a machine learning technique designed to uncover associations between categorical variables in data. In this project, we explore two different approaches to association rule mining: the Apriori Algorithm and the Brute Force Method. Our goal is to identify frequently occurring item combinations and generate meaningful association rules using a simulated dataset that mimics real-world retail transactions. 

	Project Description 
	Summary 
	Source Code 
	Code Explanation 
	DataProcessor Class: 
	AssociationRuleMiner Class: 
	Apriori Algorithm (analyzeApriori) 
	Brute Force Method (analyzeBruteForce) 
	Rule Generation (_generateRules) 

	runAnalysis Function: 

	Conclusion 

